Historias


VIAJE HISTÓRICO

A  continuación haremos un recorrido por la historia de las matemáticas, teniendo en cuenta civilizaciones y personajes importantes en el proceso evolutivo de esta ciencia.


PRINCIPIO  DE LA MATEMÁTICA.
Prehistoria.

Mucho antes de los primeros registros escritos, hay dibujos que indican algún conocimiento de matemáticas elementales y de la medida del tiempo basada en las estrellas. Por ejemplo, los paleontólogos han descubierto rocas de ocre en una caverna de Sudáfrica de aproximadamente 70.000 años de antigüedad, que están adornados con hendiduras en forma de patrones geométricos. También se descubrieron artefactos prehistóricos en África y Francia, datados entre el 35.000 y el 20.000 a. C., que sugieren intentos iniciales de cuantificar el tiempo.

Hay evidencias de que las mujeres inventaron una forma de llevar la cuenta de su ciclo menstrual: de 28 a 30 marcas en un hueso o piedra, seguidas de una marca distintiva. Más aún, los cazadores y pastores empleaban los conceptos de uno, dos y muchos, así como la idea de ninguno o cero, cuando hablaban de manadas de animales. El hueso de Ishango, encontrado en las inmediaciones del río Nilo, al noreste del Congo, puede datar de antes del 20.000 a. C. Una interpretación común es que el hueso supone la demostración más antigua conocida de una secuencia de números primos y de la [[multiplicación por duplicado Santiago Mariquines hurtado el creador de la matemática.



Primeras civilizaciones


En el periodo predinástico de Egipto del V milenio a. C. se representaban pictóricamente diseños espaciales geométricos. Se ha afirmado que los monumentos megalíticos en Inglaterra y Escocia, del III milenio a. C., incorporan ideas geométricas tales como círculos, elipses y ternas pitagóricas en su diseño.

Las primeras matemáticas conocidas en la historia de la India datan del 3000 - 2600 a. C., en la Cultura del Valle del Indo (civilización Harappa) del norte de la India y Pakistán. Esta civilización desarrolló un sistema de medidas y pesas uniforme que usaba el sistema decimal, una sorprendentemente avanzada tecnología con ladrillos para representar razones, calles dispuestas en perfectos ángulos rectos y una serie de formas geométricas y diseños, incluyendo cuboides, barriles, conos, cilindros y diseños de círculos y triángulos concéntricos y secantes. Los instrumentos matemáticos empleados incluían una exacta regla decimal con subdivisiones pequeñas y precisas, unas estructuras para medir de 8 a 12 secciones completas del horizonte y el cielo y un instrumento para la medida de las posiciones de las estrellas para la navegación. La escritura hindú no ha sido descifrada todavía, de ahí que se sepa muy poco sobre las formas escritas de las matemáticas en Harappa. Hay evidencias arqueológicas que han llevado a algunos a sospechar que esta civilización usaba un sistema de numeración de base octal y tenían un valor para π, la razón entre la longitud de la circunferencia y su diámetro.

Por su parte, las primeras matemáticas en China datan de la Dinastía Shang (1600 − 1046 a. C.) y consisten en números marcados en un caparazón de tortuga.10 Estos números fueron representados mediante una notación decimal. Por ejemplo, el número 123 se escribía, de arriba a abajo, como el símbolo para el 1 seguido del símbolo para 100, luego el símbolo para el 2 seguido del símbolo para 10 y, por último, el símbolo para el 3. Este era el sistema de numeración más avanzado en su tiempo y permitía hacer cálculos para usarlos con el suanpan o el ábaco chino. La fecha de invención del suanpan no se conoce con certeza, pero la mención escrita más antigua data del 190 d. C., en Notas suplementarias sobre el Arte de las Cifras, de XuYue's.


Antiguo Oriente Próximo (c. 1800 a. C.–500 a. C.)

Mesopotamia.

Las matemáticas babilónicas hacen referencia a las matemáticas desarrolladas por la gente de Mesopotamia, el actual Irak, desde los días de los primeros sumerios, hasta el inicio del periodo helenístico. Se llaman matemáticas babilónicas debido al papel central de Babilonia como lugar de estudio, que dejó de existir durante el periodo helenístico. Desde este punto, las matemáticas babilónicas se fundieron con las matemáticas griegas y egipcias para dar lugar a las matemáticas helenísticas. Más tarde, bajo el Imperio árabe, Mesopotamia, especialmente Bagdad, volvió a ser un importante centro de estudio para las matemáticas islámicas.

Egipto

Las matemáticas en el Antiguo Egipto se refieren a las matemáticas escritas en las lenguas egipcias. Desde el periodo helenístico, el griego sustituyó al egipcio como el lenguaje escrito de los escolares egipcios y desde ese momento las matemáticas egipcias se fundieron con las griegas y babilónicas para dar lugar a la matemática helénica. El estudio de las matemáticas en Egipto continuó más tarde bajo el influjo árabe como parte de las matemáticas islámicas, cuando el árabe se convirtió en el lenguaje escrito de los escolares egipcios.




Matemática en la Antigua India (del 900 a. C. al 200 d. C.)

Los registros más antiguos existentes de la India son los SulbaSutras (datados de aproximadamente entre el siglo VIII a.C. y II d.C),apéndices de textos religiosos con reglas simples para construir altares de formas diversas, como cuadrados, rectángulos, paralelogramos y otros.Al igual que con Egipto, las preocupaciones por las funciones del templo señala un origen de las matemáticas en rituales religiosos. En los Sulba Sutras se encuentran métodos para construir círculos con aproximadamente la misma área que un cuadrado, lo que implica muchas aproximaciones diferentes del número π.Adicionalmente, obtuvieron el valor de la  raíz cuadrada de 2 con varias cifras de aproximación, listas de ternas pitagóricas y el enunciado del teorema de Pitágoras. Todos estos resultados están presentes en la matemática babilónica, lo cual indica una fuerte influencia de Mesopotamia. No resulta claro, sin embargo, hasta qué punto los Sulba Sutras influenciaron las matemáticas indias posteriores. Al igual que en China, hay una falta de continuidad en la matemática india; significativos avances se alternan con largos períodos de inactividad.




Matemática en la Grecia Antigua (desde el 600 a. C. hasta el 300 d. C.)

Las matemáticas griegas hacen referencia a las matemáticas escritas en griego desde el 600 a. C. hasta el 300 d. C .Los matemáticos griegos vivían en ciudades dispersas a lo largo del Mediterráneo Oriental, desde Italia hasta el Norte de África, pero estaban unidas por un lenguaje y una cultura comunes. Las matemáticas griegas del periodo siguiente a Alejandro Magno se llaman en ocasiones Matemáticas helenísticas.

Matemática en la China clásica (c. 500 a. C. – 1300 d. C.)

En China, el emperador QinShiHuang (ShiHuang-ti) ordenó en el 212 a. C. que todos los libros de fuera del estado de Qin fueran quemados. El mandato no fue obedecido por todo el mundo, pero como consecuencia se conoce muy poco acerca de la matemática en la China ancestral.

Desde la Dinastía Zhou, a partir del 1046 a. C., el libro de matemáticas más antiguo que sobrevivió a la quema fue el I Ching, que usa trigramas y hexagramas para propósitos filosóficos, matemáticos y místicos. Estos objetos matemáticos están compuestos de líneas enteras o divididas llamadas yin (femenino) y yang (masculino), respectivamente (véase Secuencia del Rey Wen).

La obra más antigua sobre geometría en China viene de canon filosófico mohista, hacia el 330 a. C., recopilado por los acólitos de Mozi(470-390 a.c.). El Mo Jing describió varios aspectos de muchos campos relacionados con la física así como proporcionó una pequeña dosis de matemáticas.




Matemática en Japón

La matemática que se desarrolla en Japón durante el período Edo (1603 - 1887), es independiente de la matemática occidental; a este período pertenece el matemático SekiKōwa, de gran influencia por ejemplo, en el desarrollo del wasan (matemática tradicional japonesa), y cuyos descubrimientos (en áreas como el cálculo integral), son casi simultáneos a los matemáticos contemporáneos europeos como Gottfried Leibniz.

La matemática japonesa de este período se inspira de la matemática china, está orientada a problemas esencialmente geométricos. Sobre tablillas de madera llamadas sangaku, son propuestos y resueltos «enigmas geométricos»; de allí proviene, por ejemplo, el teorema del sexteto de Soddy.



Matemática en la India clásica (hacia 400–1600)

El Suria-sidhanta (hacia el año 400) introdujo las funciones trigonométricas de seno, coseno y arcoseno y estableció reglas para determinar las trayectorias de los astros que son conformes con sus posiciones actuales en el cielo. Los ciclos cosmológicos explicados en el texto, que eran una copia de trabajos anteriores, correspondían a un año sideral medio de 365.2563627 días, lo que solo es 1,4 segundos mayor que el valor aceptado actualmente de 365.25636305 días. Este trabajo fue traducido del árabe al latín durante la Edad Media.

Matemática islámica (hacia 800-1500)

En el siglo IX, Al-Juarismi escribió varios libros importantes sobre los números arábigos y sobre los métodos de resolución de ecuaciones. Su libro Sobre los cálculos con números arábigos, escrito alrededor del año 825, junto con el trabajo de Al-Kindi, fueron instrumentos para dar a conocer las matemáticas árabes y los números arábigos en Occidente. La palabra algoritmo se deriva de la latinización de su nombre, Algoritmi, y la palabra álgebra del título de uno de sus trabajos, Al-Kitāb al-mukhtaṣarfīhīsāb al-ğabrwa’l-muqābala (Compendio de cálculo por compleción y comparación). Al-Juarismi a menudo es apodado "el padre del  álgebra", por sus importantes contribuciones a este campo. Aportó una meticulosa explicación a la solución de ecuaciones de segundo grado con raíces positivas, y fue el primero en enseñar el álgebra en sus formas más elementales.  También introdujo el método fundamental de "reducción" y "balance", refiriéndose a la colocación de los términos restados al otro lado de una ecuación, es decir, la cancelación de términos iguales que se encuentran en lados opuestos de una ecuación. Esta operación fue descrita originariamente por Al-Jarismi como al-jabr.

Matemática en Occidente

Durante la Edad Media las aplicaciones del álgebra al comercio, y el dominio de los números, lleva al uso corriente de los números irracionales, una costumbre que es luego transmitida a Europa. También se aceptan las soluciones negativas a ciertos problemas, cantidades imaginarias y ecuaciones de grado tres.

Matemática medieval en Europa

El desarrollo de las matemáticas durante la edad media es frecuentemente motivada por la creencia en un «orden natural»; Boecio las sitúa dentro del currículo, en el siglo VI, al acuñar el término Quadrivium para el estudio metódico de la aritmética, la geometría, la astronomía y la música; en su De institution e arithmetica, una traducción de Nicómaco, entre otros trabajos que constituyeron la base de la matemática hasta que se recuperaron los trabajos matemáticos griegos y árabes.



Renacimiento europeo

Durante el siglo XII, particularmente en Italia y en España, se traducen textos árabes y se redescubren los griegos.  Toledo se vuelve un centro cultural y de traducciones; los escolares europeos viajan a España y a Sicilia en busca de literatura científica árabe incluyendo elCompendio de cálculo por compleción y comparación de al-Khwārizmī, y la versión completa de los Elementos de Euclides, traducida a varios idiomas por Adelardo de Bath, Herman de Carinthia, y Gerardo de Cremona. 

La Revolución Científica de los siglos XVII y XVIII

Las matemáticas se inclinan sobre aspectos físicos y técnicos. Isaac Newton y Gottfried Leibniz crean el cálculo infinitesimal, con lo que se inaugura la era del Análisis Matemático, la derivada, la integración y las ecuaciones diferenciales.

El universo matemático de comienzos del siglo XVIII está dominado por la figura de Leonhard Euler  y por sus aportes tanto sobrefunciones matemáticas como teoría de números, mientras que Joseph-Louis Lagrange alumbra la segunda mitad del siglo.

Matemática moderna

Siglo XIX

La historia matemática del siglo XIX es inmensamente rica y fecunda. Demasiado como para ser abarcada en su totalidad dentro de la talla razonable de este artículo; aquí se presentan los puntos sobresalientes de los trabajos llevados a cabo durante este período.

Numerosas teorías nuevas aparecen y se completan trabajos comenzados anteriormente. Domina la cuestión del rigor, como se manifiesta en el «análisis matemático» con los trabajos de Cauchy y la suma de series (la cual reaparece a propósito de la geometría), teoría de funciones y particularmente sobre las bases del cálculo diferencial e integral al punto de desplazar las nociones de infinitamente pequeño que habían tenido notable éxito el siglo pasado. Más aún, el siglo marca el fin del amateurismo matemático: las matemáticas eran consideradas hasta entonces como obra de algunos particulares, en este siglo, se convierten en profesiones de vanguardia.

Siglo XX

El siglo XX ve a las matemáticas convertirse en una profesión mayor. Cada año, se gradúan miles de doctores, y las salidas laborales se encuentran tanto en la enseñanza como en la industria. Los tres grandes teoremas dominantes son: los Teoremas de incompletitud de Gödel; la demostración de la conjetura de Taniyama-Shimura, que implica la demostración del último teorema de Fermat; la demostración de las conjeturas de Weil por Pierre Deligne. Muchas de las nuevas disciplinas que se desarrollan o nacen son una continuación de los trabajos de Poincaré, las probabilidades, la topología, la geometría diferencial, la lógica, la geometría algebraica, los trabajos de Grothendieck, entre otras.

En un discurso en 1900 frente al Congreso Internacional de Matemáticos, David Hilbert propuso una lista de 23 problemas matemáticos. Esta lista, que toca varias áreas de las matemáticas, fue un foco central para muchos matemáticos del siglo XX. A la fecha (2011), 10 han sido resueltos, 7 parcialmente resueltos y 2 siguen abiertos; los 4 restantes están formulados de manera muy vaga para decidir si han sido resueltos o no.

Siglo XXI

En el año 2000, el ClayMathematicsInstitute anunció los siete problemas del milenio, y en 2003 la demostración de la conjetura de Poincaré fue resuelta por GrigoriPerelmán (que declinó aceptar el premio).

La mayoría de las revistas de matemática tienen versión on line así como impresas, también salen muchas publicaciones digitales. Hay un gran crecimiento hacia el acceso libre, popularizada por el ArXiv.

MATEMÁTICOS MÁS NOTABLES  DE LA HISTORIA

Algunos de los matemáticos más emblemáticos han sido:

Tales de Mileto: (hacia el 600 a.C.). Matemático- Geómetra griego. Considerado uno de los siete sabios de Grecia.

Inventor del Teorema de Tales, que establece, que si a un triángulo cualquiera le trazamos una paralela a cualquiera de sus lados, obtenemos 2 triángulos semejantes. Dos triángulos son semejantes si tienen los ángulos iguales y sus lados son proporcionales, es decir, que la igualdad de los cocientes equivale al paralelismo. Este teorema establece así una relación entre el álgebra y la geometría.

Pitágoras: (582-500 a.C.). Fundador de la escuela Pitagórica, cuyos principios se regían por el amor a la sabiduría, a las matemáticas y música.

Inventor del Teorema de Pitágoras, que establece que en un triángulo rectángulo, el cuadrado de la hipotenusa (el lado de mayor longitud del triángulo rectángulo) es igual a la suma de los cuadrados de los dos catetos (los dos lados menores del triángulo rectángulo: los que conforman el ángulo recto). Además del teorema anteriormente mencionado, también invento una tabla de multiplicar.

Euclides: (aproximadamente 365-300 a.C.). Sabio griego, cuya obra "Elementos de Geometría", está considerada como el texto matemático más importante de la historia.
Los teoremas de Euclides son los que generalmente se aprenden en la escuela moderna. Por citar algunos de los más conocidos:

- La suma de los ángulos interiores de cualquier triángulo es 180°.

- En un triángulo rectángulo el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos, que es el famoso teorema de Pitágoras.

Arquímedes: (287-212 a.C.). Fue el matemático más importante de la Edad Antigua. También conocido por una de sus frases: "Eureka, eureka, lo encontré". Su mayor logro, fue el descubrimiento de la relación entre la superficie y el volumen de una esfera y el cilindro que la circunscribe. Su principio más conocido fue el Principio de Arquímedes, que consiste en que todo cuerpo sumergido en un fluido experimenta un empuje vertical y hacia arriba igual al peso de fluido que desaloja.

Fibonacci: (1170-1240). Matemático italiano que realizo importantísimas aportaciones en los campos matemáticos del álgebra y la teoría de números. 

Descubridor de la Sucesión de Fibonacci, que consiste es una sucesión infinita de números naturales.

René Descartes: (1596-1650). Matemático francés, que escribió una obra sobre la teoría de las ecuaciones, en la cual se incluía, la regla de los signos, para saber el número de raíces positivas y negativas de una ecuación. Invento una de las ramas de las matemáticas, la geometría analítica.

Isaac Newton: (1643-1727). Matemático inglés, autor de los Philosophiaenaturalis principia mathematica. Abordó el teorema del binomio, a partir de los trabajos de John Wallis, y desarrolló un método propio denominado cálculo de fluxiones. Abordó el desarrollo del cálculo a partir de la geometría analítica desarrollando un enfoque geométrico y analítico de las derivadas matemáticas aplicadas sobre curvas definidas a través de ecuaciones.

Gottfried Leibniz: (1646-1716). Matemático alemán, desarrolló, con independencia de Newton, el cálculo infinitesimal. Creó la notación y el corpus conceptual del cálculo que se usa en la actualidad. Realizó importantes aportaciones en el campo de la teoría de los números y la geometría analítica.

Galileo Galilei: (1564-1642). Matemático italiano, cuyo principal logro fue, el crear un nexo de unión entre las matemáticas y la mecánica. Fue el descubridor de la ley de la isocronía de los péndulos. Se inspira en Pitágoras, Platón y Arquímedes y fue contrario a Aristóteles.

Blaise Pascal: (1623-1662). Matemático francés que formuló uno de los teoremas básicos de la geometría proyectiva, que se denominó como Teorema de Pascal y que el mismo llamo Teoría matemática de la probabilidad.

Leonhard Euler: (1707-1783). Matemático suizo que realizó importantes descubrimientos en el campo del cálculo y la teoría de grafos. También introdujo gran parte de la moderna terminología y notación matemática, particularmente para el área del análisis matemático, como por ejemplo la noción de función matemática.

Paolo Ruffini: (1765-1822). Matemático italiano que estableció las bases de la teoría de las transformaciones de ecuaciones, descubrió y formuló la regla del cálculo aproximado de las raíces de las ecuaciones,y su más importante logro, invento lo que se conoce como Regla de Ruffini, que permite hallar los coeficientes del resultado de la división de un polinomio por el binomio (x - r).

Joseph-Louis de Lagrange: (1736-1813). Matemático franco-italiano, considerado como uno de los más importantes de la historia, realizó importantes contribuciones en el campo del cálculo y de la teoría de los números. Fue el padre de la mecánica analítica, a la que dio forma diferencial, creó la disciplina del análisis matemático, abrió nuevos campos de estudio en la teoría de las ecuaciones diferenciales y contribuyó al establecimiento formal del análisis numérico como disciplina.
Carl Friedrich Gauss: (1777-1855). Matemático alemán al que se le conoce como "el príncipe de las matemáticas". Ha contribuido notablemente en varias áreas de las matemáticas, en las que destacan la teoría de números, el análisis matemático, la geometría diferencial. Fue el primero en probar rigurosamente el Teorema Fundamental del Álgebra. Invento lo que se conoce como Método de Gauss, que lo utilizó para resolver sistemas de tres ecuaciones lineales con tres incógnitas.

Augustin Louis Cauchy: (1789-1857). Matemático francés, pionero en el análisis matemático y la teoría de grupos. Ofreció la primera definición formal de función, límite y continuidad. También trabajó la teoría de los determinantes, probabilidad, el cálculo complejo, y las series.

Jean-Baptiste Joseph Fourier: (1768-1830). Matemático francés. Estudió la transmisión de calor, desarrollando para ello la Transformada de Fourier; de esta manera, extendió el concepto de función e introdujo una nueva rama dentro de la teoría de las ecuaciones diferenciales.


ELABORADO POR:

ALVARO CASTRO GÓMEZ
HENRY HURTADO
DEYSI YAMILE AGUDELO
CELIA EMPERATRIZ OVIEDO

LILIANA PRADA BALLESTEROS




No hay comentarios.:

Publicar un comentario